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Irreversibility with quantum trajectories
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Irreversibility is an important issue for many quantum processes. Loschmidt echoes, originally introduced as
a way to gauge sensitivity to perturbations in quantum mechanics, have turned out to be a useful tool for its

investigation. Following the philosophy supporting this idea, and using quantum trajectories as defined in the
causal interpretation of quantum mechanics due to Bohm, we introduce in this paper a more informative
alternative measure for irreversibility. The method is applied to the Bunimovich stadium billiard, a paradig-
matic example of chaotic system, that constitutes an excellent model for mesoscopic devices.
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I. INTRODUCTION

In the last 20 years, there has been an increasing interest
in the study of chaotic phenomena [1], both in dissipative
and Hamiltonian systems. These processes are very relevant
in a variety of fields in physics. Among them, the late addi-
tion of the increasingly developing area of nanotechnology
deserves a special mention [2]. For example, the ballistic
transport of electrons in semiconductor heterostructures has
been recently studied experimentally [3,4]. The correspond-
ing dynamics is often chaotic and the associated motions are
classically well characterized in terms of relevant phase
space structures, such as attractors, homoclinic tangles,
Lyapunov exponents, etc., that have been thoroughly studied.
The situation is different for the quantum counterpart, where
much less is known, being “quantum chaos” an active field
of research [5,6].

Most problems in quantum chaos are of theoretical nature,
falling within the category of semiclassical theories [7].
However, they find an immediate application in mesoscopic
systems, thanks to recent technical developments that have
made possible the manufacturing of micro- and nanostruc-
tures, whose dimensions and characteristics allow charge
transport without loss of electron phase coherence [8]. More-
over, when the system is confined in all dimensions and the
sample is sufficiently clean, the correlations in the energy
spectrum against variations of parameters, such as the
sample geometry or the intensity of an external field, are
very similar to those found in quantum billiards [9].

Important recent topics in the field of quantum chaos are
irreversibility and/or sensitivity to perturbations, noise for
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example. They can be related to the theory of chaos, concept
which is classically interpreted as the result of exponential
separation of trajectories in phase space [1]. However, in
quantum mechanics, and due to the unitary character of this
theory, sensitivity to initial conditions is a meaningless con-
cept. For this reason, Peres proposed to consider the sensi-
tivity to perturbations in quantum systems, as a mean to in-
vestigate the instability of quantum motion [10]. Such
quantity, called Loschmidt echo (LE) or fidelity, can be de-
fined as

M(1) = (plexp(iHr)exp(- iH)| )] (1)

(A is set equal to unity throughout this paper). It measures
the ability of a system to return to an initial state |¢/), after a

forward evolution with a Hamiltonian PAIO, followed by a (im-
perfect) reverse evolution with a perturbed Hamiltonian H

=I:IO+E (reversibility). The perturbation 3, can represent the
uncontrolled degrees of freedom of an environment, thus
providing a bridge to link induced decoherence effects and
LE, as recently established in Ref. [11]. Alternatively, LE can
be thought of as comparing the evolution of an initial state
under different Hamiltonians (sensitivity to perturbations). In
the last five years, many aspects of the LE have been con-
sidered in the literature [12—14]. The most interesting result
is probably that, for a given range of perturbation strengths,
the LE decays exponentially, at a rate given by the smallest
quantity between the mean Lyapunov exponent and the level
broadening following from the golden rule [12,13]. In the
case of quantum computers [15] these issues are of para-
mount importance, since in this case it is essential to prevent
any loss of coherence due to interaction with the environ-
ment.

As mentioned above, two basic ingredients in the idea of
LE are irreversibility and sensitivity to perturbations. How-
ever, the calculation of LE’s relies only on magnitudes evalu-
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ated at the end of the propagation process, thus not being
able to provide any information about the involved history
and associated mechanism. In fact, it has been discussed very
recently [14] that maximum return probabilities can happen
at times different from the total time elapsed forward, indi-
cating that there may exist better definitions of the echo time
than the original one.

In this paper, we propose a method to study irreversibility
that, keeping the same basic philosophy under the LE, brings
some solution to the abovementioned drawback. For this pur-
pose, we use quantum trajectories, as defined in the de
Broglie-Bohm (BB) formulation of quantum mechanics [16].
This complementary quantum theory of motion [17], devel-
oped in the 1960s trying to overcome the interpretative dif-
ficulties encountered in the standard theory, combines both
the accuracy of the standard quantum description with intui-
tive explanations derived by the causal trajectory formalism,
thus providing a powerful tool to understand the physics un-
derlying microscopic phenomena [18]. This method has also
an important additional advantage, since within its frame-
work it is very easy to consider realistic perturbations, such
as noise. This is particularly interesting in connection with
billiards since, as stated before, they constitute ideal model
for the transport of electrons in mesoscopic systems [5].

The organization of the paper is as follows. In the next
section we briefly describe the model and methods used in
our theoretical treatment. The results and discussion are
given in Sec. III, and we present some concluding remarks in
the last section.

II. MODEL AND CALCULATIONS

The fundamental equations in the BB theory are derived
by introducing the wave function in polar form, (r,?)
=R(r,1)e’S™  into the time-dependent Schridinger equation,
thus obtaining two real equations

IR? Vs
—+V. <R2—> =0, (2a)
ot m
S (VS)? 1 V2R
—+ &8y LVR =0, (2b)
ot 2m 2m R

which are the continuity and “quantum” Hamilton-Jacobi
equations, respectively. Here, the last term in the left-hand
side of Eq. (2b) is the so-called quantum potential. This is a
nonlocal function given by the quantum state, which, to-
gether with V, determines the total forces acting on the sys-
tem. Similarly to what is done in the usual Hamilton-Jacobi
theory, a quantum equation of motion can then be defined
from (2b) as

mr=V§, (3)
from which the corresponding quantum trajectories can be
obtained by numerical integration with a suitable method,
once (r) is known.

As mentioned in Sec. I, these orbits can be used to define
our measure of irreversibility in the following way. Starting
from an ensemble of suitable initial conditions, i.e., repro-
ducing the probability density distribution given by |4 [19],
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we propagate them forward in time until a final value 7. At
that point we propagate the same trajectories backwards, but
introducing a perturbation in the process consisting of kicks
given at equally spaced intervals of time Az. To avoid con-
fusion, we will denote the “new” reversed time by 7. The
effect of the kick consists of a displacement of the particle to
a new position, randomly chosen within a given circle
around the original landing point obtained in the integration.
In this process we assume that the pilot wave function does
not change during the kick. This is an approximation, but let
us remark that approximate computational schemes have al-
ready been used in the literature [20], in connection with
quantum trajectories in other dynamical problems. Although
not absolutely rigorous, they have the advantage of providing
an economic alternative to obtain a practical and yet accurate
description of quantum processes.

Finally, the distance in configuration space d between
both orbits is monitored as a function of 7. In this way we
can compute a comparison, followed in time, of both unper-
turbed and perturbed dynamics of the system. From this,
information about the mechanisms of irreversibility can be
obtained. The idea behind this procedure is to mimic a ther-
mal environment (noise) whose effective action is to interact
with the particle in an averaged way, but leaving the pilot
wave function unchanged by the kicks. Notice that this per-
turbation is a much realistic effect than the shape distortions
considered so far in billiard models [21].

The system that we have chosen to study is a two degrees
of freedom model consisting of a particle of mass 1/2 en-
closed in a desymmetrized stadium billiard of radius r=1 and
area 1+m/4 (see Fig. 1). This choice and that for 7 made
after Eq. (1) define units of length and time that will be used
to make nondimensional all magnitudes reported in this pa-
per. Dirichlet boundary conditions are imposed at the bound-
aries, i.e., only odd-odd symmetry eigenfunctions are consid-
ered. The stadium billiard is known to be classically ergodic.
Moreover, experiments in stadium shape microwave cavities
have been performed [5,22], and conductance measurements
in semiconductor billiard-shaped devices have been carried
out [23].

III. RESULTS AND DISCUSSION

To gauge the performance of our method, we examine a
simple situation with chaotic dynamics that has been consid-
ered extensively in the past [24]. It consists in following the
dynamics of a wave packet along an unstable periodic orbit.
The corresponding wave function is initially given as the
harmonic oscillator coherent state

lﬂ(x,y,t — 0) — (2a/7T l/4e—oz(x - xo)z—a(y - yo)zei(PSx+P?,y)’ (4)

with =16, (xq,y0, P’ P%)=(1,1/2,96/15,-48/\5), an en-
ergy value of E=2304, and a period 7=0.0466. This corre-
sponds to a packet with its center on the diagonal orbit, run-
ning from the upper left to the lower right corners of the
billiard, that would have diamond shape in the full version of
the stadium. The time evolution of this state, calculated by
projection into the system eigenstates followed by applica-
tion of the evolution operator [25], is shown in Fig. 1.
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FIG. 1. Time evolution of the probability density,

0.075

2, corresponding to a wave packet initially centered on the diagonal of a

desymmetrized stadium billiard with r=1, area 1+ /4, and Dirichlet boundary conditions. The elapsed time is indicated below each panel.

The packet initially moves following the classical path,
showing just a slight dispersion, as dictated by the Ehrenfest
theorem. After the first rebound at the lower right corner
(taking place at £=0.009), the packet spreads in a fan-type
pattern (1~ 0.019), experiencing the well known defocaliza-
tion effect originated by the self-focal point of the orbit [24].
Afterwards, the dispersed wave collides with the upper left
corner, giving rise to a noticeable series of horizontal fringes
(r=0.028-0.047), formed by the maxima and nodal lines of
the wave function. For subsequent times other rebounds take
place, originating at t=0.066 a complicated structure in the
distribution of the quantum probability density.

These patterns dictate the topology of the corresponding
quantum trajectories [19], which have been computed by in-
tegration of Eq. (3) using a Gear stiff method with tolerance
control. The initial conditions were selected so as to repro-
duce the probability density associated with Eq. (4). Notice
that the time values considered here are relatively short. Ac-
cordingly, the accumulated errors are not very severe and the
quantum trajectories are completely reversible in the absent
of perturbation.

In Fig. 2 we show the distance d computed for Ar
=0.001 and averaged over 20 such trajectories propagated up
to a final time of tf:0.0Z, for different values of the pertur-
bation strength (parametrized by the kicking radius &). No-
tice that the origin of the reversed time, 7=0, corresponds to
the final point of the forward propagation #;. As can be seen,
the behavior of the four curves is the same. In the range of
the lowest times considered, #=<0.008, they grow very
slowly and linearly. After that, the averaged distance in-
creases dramatically in a cubic fashion for times up to the
order of r~0.01. And finally, for 0.015<7<<0.020, the val-

ues of d stabilize oscillating slightly around some sort of
plateaus.

More interesting is the relationship existing between these
results and the dynamics of the original packet shown in Fig.
1. When doing this, it is important to realize that 1,=0.02 is a
relatively short time for the dynamics that we are considering
here. Actually, in this time, the packet has only had time to
return once to the vicinity of the initial position. By taking

this into account, it follows that the first part of the d versus
7 plots (showing a linear behavior) corresponds to a period
of time in which the particle moves (flies back under the
effect of the perturbation) from the center of the stadium to
just before the bounce with the circular boundary. In this part
of the travel the packet is in a semiclassical regime, in which

0.015 L : :
0011 :
& e
0.0051 { L a Tl
0.01+ L L
e} 0 ods ool [
£ 7
0.005 J e ] -
0 -.—;—;I:;—;:;— ;;;;;; : |
0 0.005 0.01 0.015 0.02

FIG. 2. Averaged distance between forward and reversed quan-
tum orbits as a function of the reverse time 7 for different values of
the perturbation strength parameter & 0.003 (full line), 0.005 (dot-
ted line), 0.008 (dashed line), and 0.011 (dashed-dotted line). A
value of #,=0.02 was used in the calculations. A fitting to a qua-
dratic expression of the averaged distance at the echo (observed for
t>0.015) is shown in the inset.
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not much dispersion (irreversibility) should be expected; this
agrees perfectly well with our numerical findings. On the
contrary, in the interval 7=0.008—0.012 the now perturbed
dynamics include the bounce with the circle. Here, a lot of
interference of the packet with itself happens, and a great
dispersion due to the perturbation takes place. This corre-

sponds to the big, cubic growth observed in the computed d.
An addition, for 7~0.02 we are at the echo, and our results
can then be compared with those that would be obtained
from the usual LE theory [12,13]. This is done in the inset to

the figure, where the functional form of d at the echo aver-

aged along the plateau (Eg) as a function of the magnitude of
the perturbation (&) is shown. As is seen, in this case, in
which we have a noise-type perturbation, this dependence is
quadratic with a very good accuracy, thus indicating that we
are in a regime controlled by the Fermi golden rule [13].
Accordingly, we can conclude that noise-type perturbations
like ours should be considered as generic from the point of
view of the LE. It is important to note here that for billiard-
shaped deformation perturbations, a linear dependence of LE
with the magnitude of the perturbation is found [21]. This
effect was explained as a result of the fact that the particular
billiard deformations used in that work do not destroy the
localization effect on short periodic orbits, as is the case for
more random perturbations, such as the one considered here.

To conclude this section, let us examine what happens
when longer #; times are considered, thus allowing a more
complicated dynamics to enter into play. To help in the in-
terpretation of the resulting curves, let us first indicate that
they should not be expected to be identical, in the interval
7=<0.02, to those previously shown in Fig. 2. The reason for
this is clear. For the new values of 7, the origin of the reverse
time 7 for the back-integrated trajectories is further apart
from that used in the calculations of Fig. 2. The results cor-
responding to 7,=0.04 and 0.06 are shown in Fig. 3. When
examined in detail, the same conclusions as for the case of
Fig. 2 are obtained. Namely, all curves consist of several
very different pieces, in which what happens is either of very
little dynamical significance (plateaus or slowly increasing

curves), or it consists in very big cubic growths of d. More-
over, these important growths always take place at the times
values at which the particle collides with the boundaries,
being the dynamics of the system there much more sensitive
to the effect of the perturbation that we have introduced.
Another interesting point worth discussing for the longer
times considered now is the dependence of the distance at

the echo, 36, with the value of the perturbation strength. The
results are shown in the insets to Fig. 3, where a quadratic
behavior is also observed in both cases. Here the fitting is not
as good as in the case with 7,=0.02. The reason for that is
very clear, since in the results in Fig. 3 there are no plateaus,
helping us to average out the oscillations which are known to
disappear when a proper average over initial wave packet is
performed.

Let us finally remark that there are, however, some differ-
ences between the results of Fig. 3 and those in Fig. 2. As
can be seen, the plateaus in Fig. 3 are not completely flat, but
rather they show a conspicuous decreasing behavior that, for
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FIG. 3. Averaged distance between forward and reversed quan-
tum orbits as a function of the reverse time, 7, for the same values
of the perturbation strength considered in Fig. 2 and values of #;
=0.04 (a) and 0.06 (b).

example, in the case of Fig. 3(b) is quite important in the
range 0.03<7<0.047. The reason for this behavior can be
understood if one considers that in these ranges of the re-
verse time, the packet is traveling from the upper left to the
lower right corners, where it takes place a dynamics influ-
enced by the self-focal point. This creates a quantum poten-
tial that forces the packet to return close to the original un-

perturbed path, which makes the separation d to go down.

IV. CONCLUDING REMARKS

In this paper we have presented a method to study irre-
versibility in quantum processes. This method is similar in
spirit to the Loschmidt echo introduced by Peres [10], but it
is constructed in terms of causal quantum trajectories, which
allows one to obtain information about the history and
mechanisms involved in the involved perturbation process.

As an example, our method has been applied to study the
dynamics of a particle moving in the vicinity of a totally
unstable periodic orbit of the stadium billiard in the presence
of noise, a model which is quite adequate for electrons in
mesoscopic cavities. Our main results can be summarized in
the following way. First, we have found that the correspond-
ing dynamics is very sensitive to the perturbation when the
particle is bouncing at the boundaries, points in which the
trajectories separate from each other cubically in time, on
average. Second, the noise-type perturbation that has been
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used in the present work behaves in a totally generic way, as
is indicated by the fact that the Fermi golden rule regime is
found.

We should remark that in our calculation times beyond the
Ehrenfest time have not been considered. For these longer
times, large interference effects in the pilot wave guiding the
quantum trajectories, and then the complexity of the associ-
ated quantum potential, are much higher and widespread
over all configuration space. This point is very interesting
and deserves further investigation, which will imply an enor-
mous computational effort if a reasonable average over ini-
tial conditions is to be maintained. The same comment ap-
plies for the consideration of larger perturbations than those
considered here, for which a Lyapunov regime is expected.
In this case, smaller times steps will be necessary to reason-
ably guarantee the accuracy along the whole evolution pro-
cess. Despite the fact that these two points have not been
considered, the results presented in this work are relevant
and interesting, since they clearly show which are the build-
ing blocks responsible for the irreversibility effect observed
in the dynamics of the system under study.

PHYSICAL REVIEW E 72, 046219 (2005)

Finally, let us conclude by presenting a brief comment on
the comparison of our results and those corresponding to the
case of an integrable dynamical behavior. For this purpose
we have performed some preliminary calculations for the
diagonal periodic orbit of a rectangular billiard of the same
area. Our results indicate that the values of the averaged
trajectories separation is always greater than in the chaotic
case considered in this paper. This is in agreement with the
results obtained by Prosen and Znidarik [26] for the standard

LE. Moreover, the results for d do not show the existence of
any plateau, as opposed to what happens in the case of the
stadium. These points deserve further investigation and will
be the subject of a future publication [27].
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